An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

نویسندگان

  • Justin A. Lemkul
  • Jing Huang
  • Benoît Roux
  • Alexander D. MacKerell
چکیده

Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarizable Empirical Force Field for Hexopyranose Monosaccharides Based on the Classical Drude Oscillator

A polarizable empirical force field based on the classical Drude oscillator is presented for the hexopyranose form of selected monosaccharides. Parameter optimization targeted quantum mechanical (QM) dipole moments, solute-water interaction energies, vibrational frequencies, and conformational energies. Validation of the model was based on experimental data on crystals, densities of aqueous-sug...

متن کامل

Balancing the Interactions of Ions, Water, and DNA in the Drude Polarizable Force Field

Recently we presented a first-generation all-atom Drude polarizable force field for DNA based on the classical Drude oscillator model, focusing on optimization of key dihedral angles followed by extensive validation of the force field parameters. Presently, we describe the procedure for balancing the electrostatic interactions between ions, water, and DNA as required for development of the Drud...

متن کامل

Drude Polarizable Force Field for Molecular Dynamics Simulations of Saturated and Unsaturated Zwitterionic Lipids.

Additive force fields are designed to account for induced electronic polarization in a mean-field average way, using effective empirical fixed charges. The limitation of this approximation is cause for serious concerns, particularly in the case of lipid membranes, where the molecular environment undergoes dramatic variations over microscopic length scales. A polarizable force field based on the...

متن کامل

Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model.

A polarizable force field for nucleic acid bases based on the classical Drude oscillator model is presented. Parameter optimization was performed to reproduce crystallographic geometries, crystal unit cell parameters, heats of sublimation, vibrational frequencies and assignments, dipole moments, molecular polarizabilities and quantum mechanical base-base and base-water interaction energies. The...

متن کامل

Polarizable empirical force field for nitrogen-containing heteroaromatic compounds based on the classical Drude oscillator

The polarizable empirical CHARMM force field based on the classical Drude oscillator has been extended to the nitrogen-containing heteroaromatic compounds pyridine, pyrimidine, pyrrole, imidazole, indole, and purine. Initial parameters for the six-membered rings were based on benzene with nonbond parameter optimization focused on the nitrogen atoms and adjacent carbons and attached hydrogens. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2016